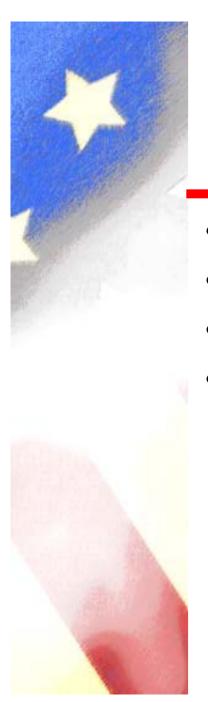
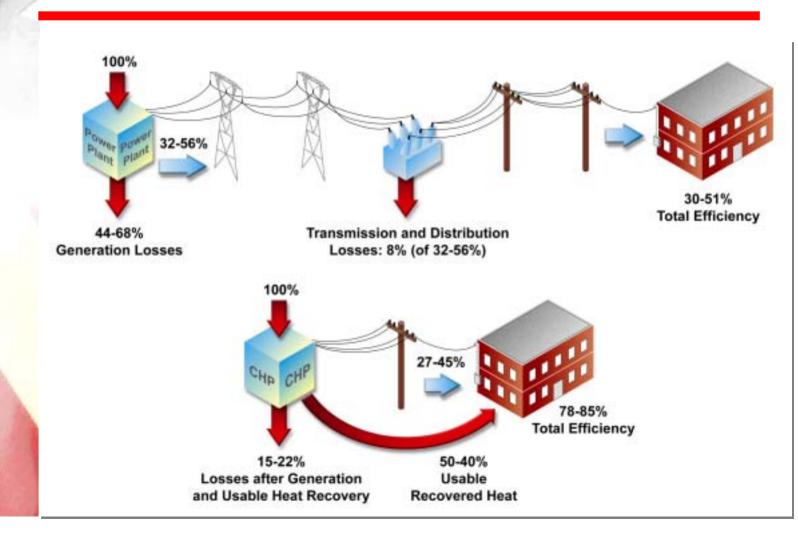
Distributed Energy Road Show Austin, Texas


as presented by

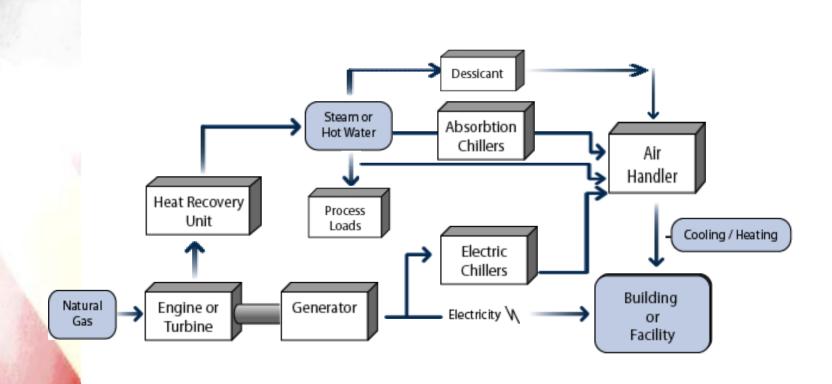
Ed Mardiat
Director of CHP Development
Burns & McDonnell

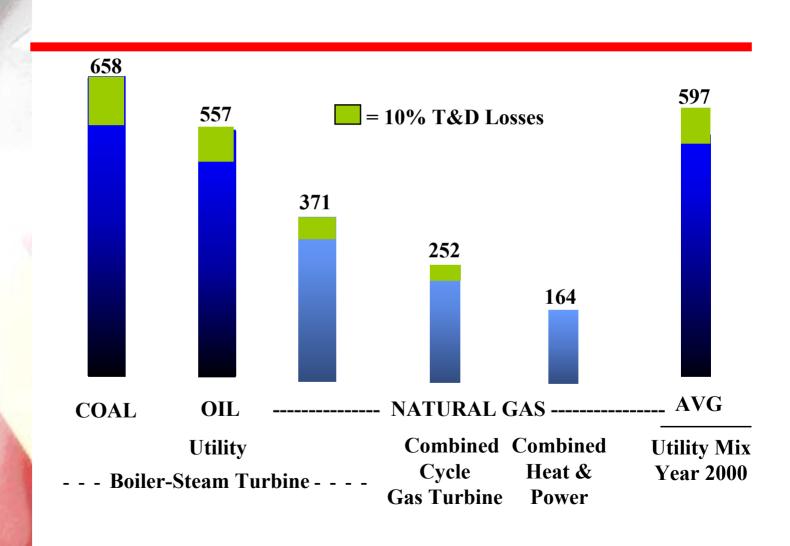
May 30, 2003



What is CHP?

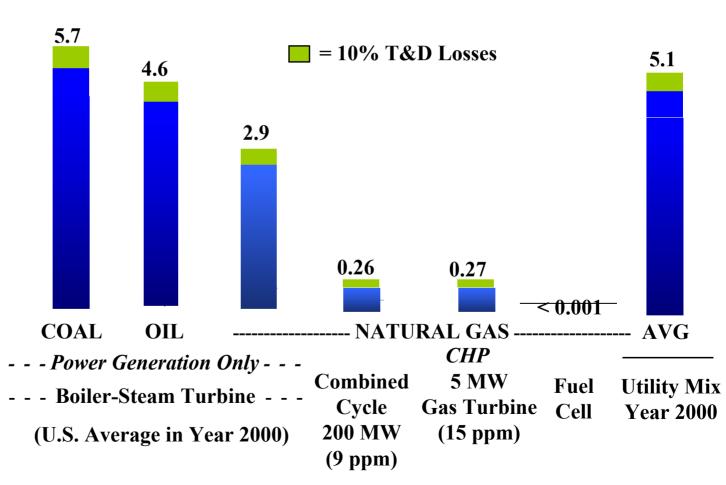
- Integrated System
- Located At or Near a Building/Facility
- Provides a Portion of the Electrical Load
- Utilizes the Waste Heat to Generate Useful Thermal Energy
 - Cooling
 - Heating
 - Dehumidification
 - Process Heat


CHP Improves Efficiency


CHP System Sizes (Terminology)

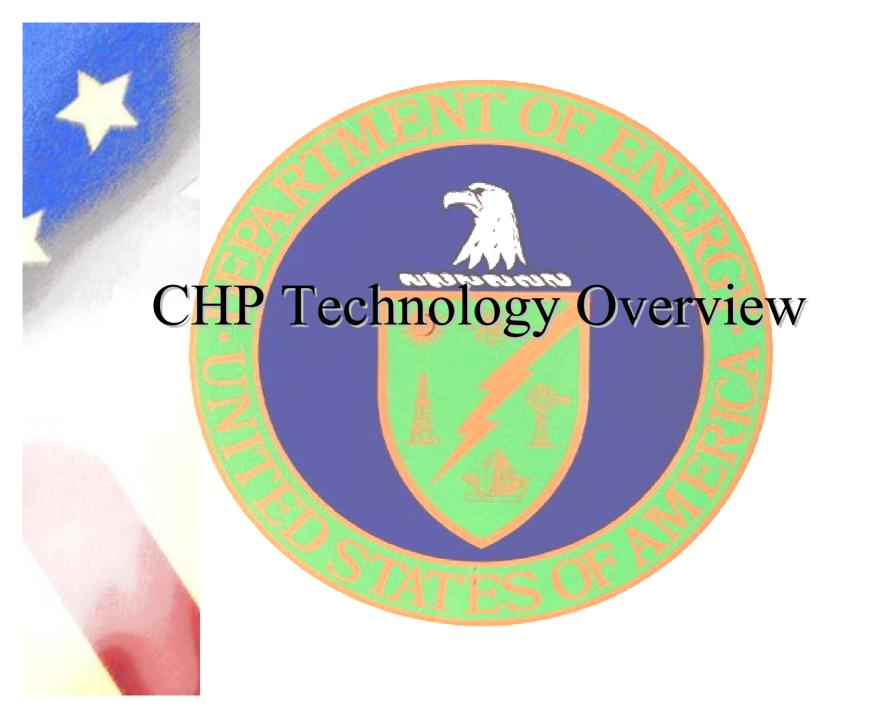
System Size Designation		Size Range	Comments
	Mega	50 to 100+ MWe	Very Large IndustrialUsually Multiple Smaller UnitsCustom Engineered Systems
	Large	10's of MWe	Industrial & Large CommercialUsually Multiple Smaller UnitsCustom Engineered Systems
	Mid	10's of kWe to Several MWe	 Commercial & Light Industrial Single to Multiple Units Potential Packaged Units
	Micro	<60 kWe	Small Commercial & ResidentialAppliance Like

Typical Commercial CHP System



Global Warming Implications of CHP (lb/MWh of Carbon Equivalent)

NO_X Implications of CHP (lb/MWh of NO_X)



High Efficiency, On-Site Generation Means ...

- Improved Reliability
- Lower Energy Costs
- Better Power Quality
- Provides Standby
 Power
- Lower Emissions (including CO2)

- Support Grid Infrastructure
 - Fewer T&D Constraints
 - Defer Costly GridUpgrades
 - Price Stability
- Facilitates Deployment of New Clean Energy Technologies
- **Enhances Competition**

Gas Combustion Turbines

- Available Size Range: 500 kW Hundreds of MW
- Efficiency Range: 25% to 40% LHV (Simple Cycle)
- Typically 3 Configurations:
 - Simple Cycle (Most Common in CHP)
 - Recuperated
 - Combined Cycle
- Thermal (Recoverable) Energy:
 - Exhaust Gas @ 900 °F to 1100 °F
 - Excellent for High Grade Steam @ 150 psig and Higher

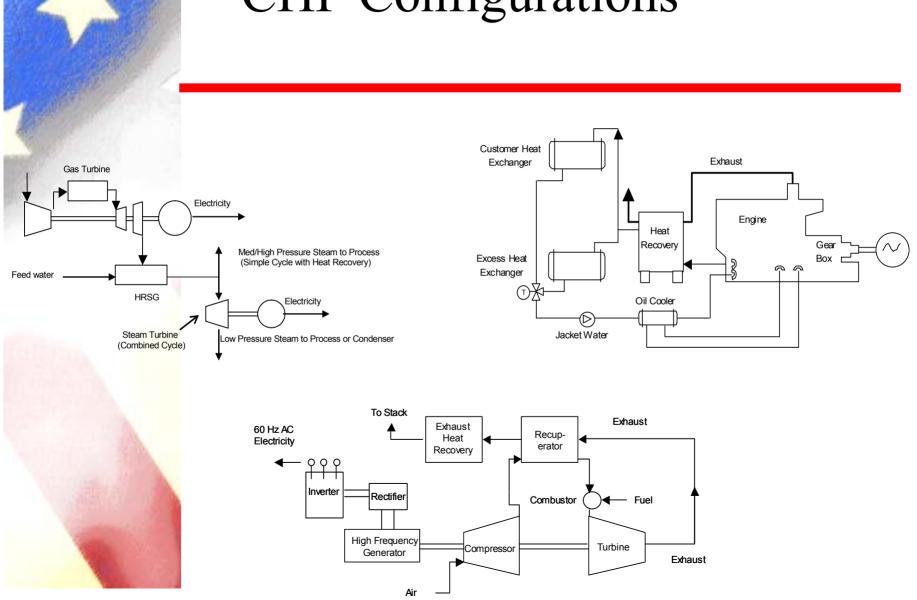
Reciprocating Engines

- Fastest Selling, Least Expensive CHP
 Prime Mover Technology Below 5 MW
- Typical Power Range: 5 kW 10 MW
- Efficiency Range: $\approx 25\%$ 40% LHV
- Part Load Operation: OK
- Type of Engines:
 - Spark Ignited --- Natural Gas/ Gasoline/ Biogas
 - Compression Ignition --- Diesel
 - Dual Fuel –Diesel Pilot

Microturbines

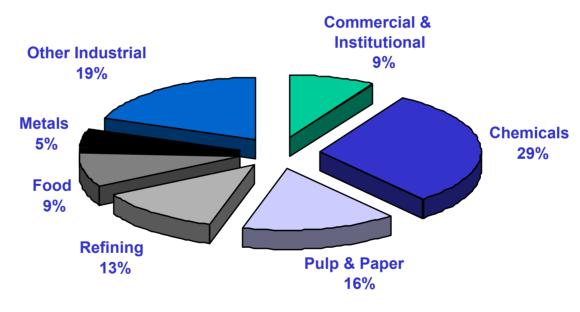
- Small Turbines with Recuperation
- Capacity Range: 25 kW to 400 kW
- Efficiency Range: 25% to 30% LHV
- Recoverable Heat: Gas Exhaust @

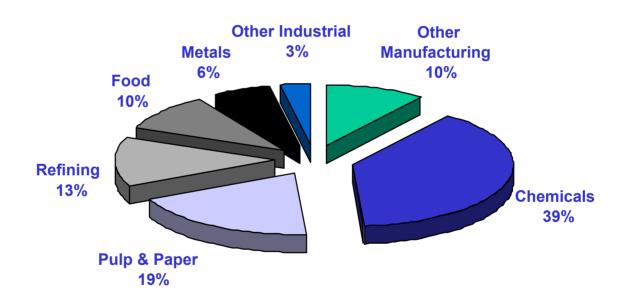
Approximately 500 °F



Fuel Cells

Fuel Cell Type	Availability	Efficien cy	Operating Temperature	U tilizatio n
Phosphori c Acid (PAFC)	Commercial >\$3,500/kW	38 - 45%	480 °F	Hot Water
Solid Oxide (SOFC)	Demonstrati on	40 – 45%	1,800 °F	High Pressure Steam
Molten Carbonate (MCFC)	Demonstrati on	50 – 60%	1,200 °F	Medium to High Pressure Steam
Proton Exchange Membrane (PEM)	Demonstrati on	33 -45%	175°F	Hot Water

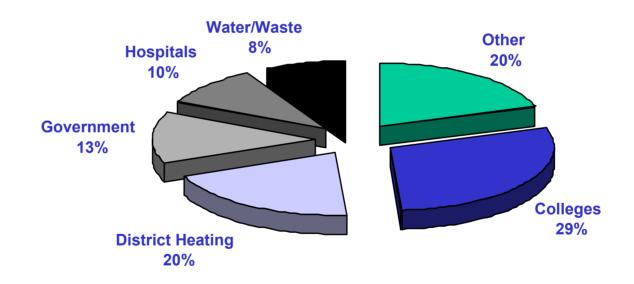

CHP Configurations


U.S. CHP Capacity 52,800 MW (1999)

National CHP Roadmap

U.S Department of Energy Environmental Protection Agency

U.S. Industrial CHP Capacity 45,500 MW (1999)



National CHP Roadmap

U.S Department of Energy Environmental Protection Agency

U.S. Commercial CHP Capacity 4,930 MW (1999)

National CHP Roadmap

U.S Department of Energy Environmental Protection Agency

Where is CHP going?

- 8 to 10 Year Window of Opportunity
 - 500 kW 20 MW Range
- DOE is Pushing CHP Technologies
 Very Hard Right Now (CHP Roadmap 46 GW by 2010)
- Combining Projects With FEMP
- United States Combined Heat & Power Association

CHP Markets and Technologies

- Targeted CHP Markets and Goals
 - Industrial plants manufacturing and processing (27 GW)
 - Buildings commercial, individual schools and hospitals and multi-family (8 GW)
 - District energy systems college campuses,
 hospital complexes, commercial campuses,
 airports and communities/municipalities (8 GW)
 - Federal facilities buildings and manufacturing plants (5 GW)

CHP Markets and Technologies

- Primary CHP Technologies
 - Gas turbines (over 60 % of the market)
 - Steam cycle boilers (over 30 % of the market)
 - Natural gas engines (under 5% of the market)

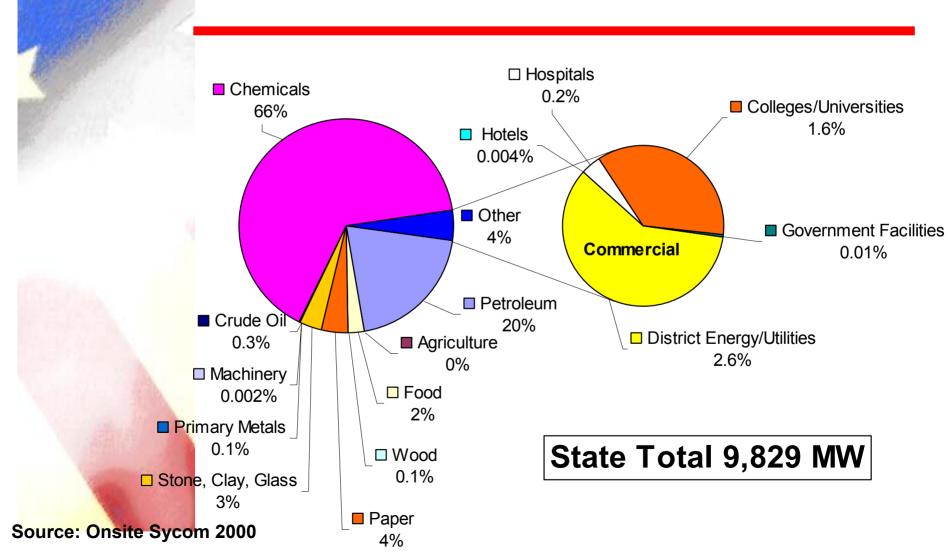
Industrial CHP Potential

- Potential for 75 to 100 GW of additional CHP in manufacturing industries
- CHP could save users \$9 billion/year in energy costs and prevent the release of almost 65
 million metric tons of carbon equivalent
- 25% of potential is in size range of reciprocating engines and microturbines
- Additional potential in non-steam CHP and mechanical drive

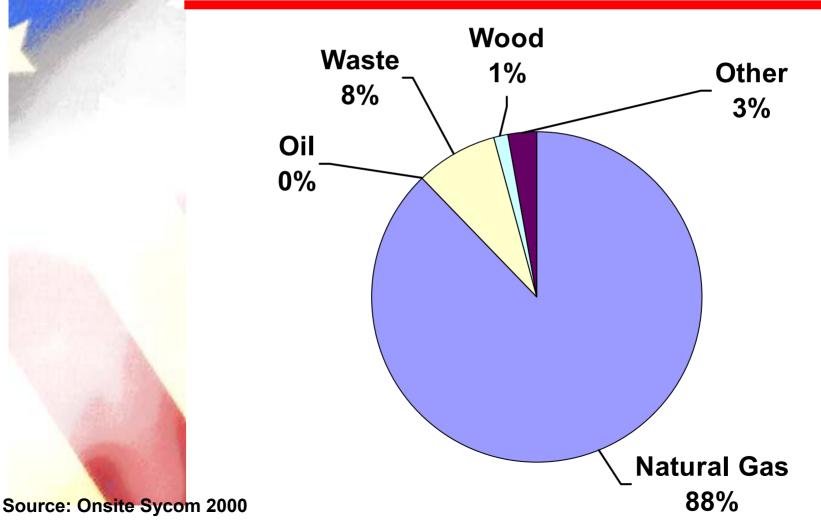
Commercial/Institutional Market

- Significant potential exists
- Market penetration to-date is extremely low
- Majority of existing capacity is in larger
 systems (>20 MW)
- Majority of technical potential is in smaller sizes (< 1 MW)
- Application of advanced technologies that use thermal energy will expand market potential
 - Heat-activated cooling
 - Thermally regenerated desiccant

Commercial and Institutional Market Segments

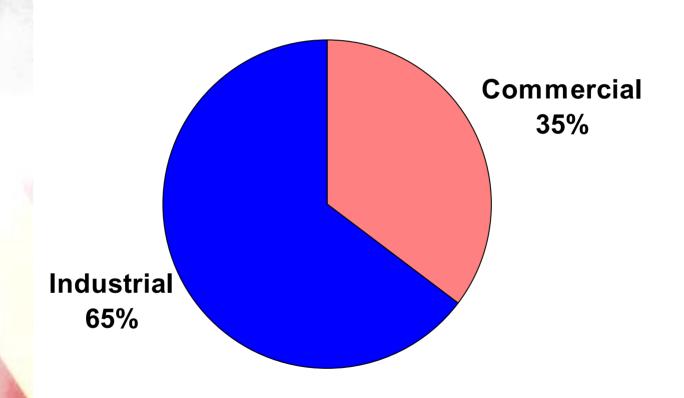

Electric Demand	Thermal Demand
100 kW – 1+ MW	Domestic hot water, space heating, pools
100-500 kW	Domestic hot water, space heating, laundry
300 kW – 5+ MW	Domestic hot water, space heating, laundry
50 – 500 kW	Domestic hot water, space heating, pools
300 kW – 30 MW	Centralized space heating, domestic hot water
100 – 800 kW	Hot water
100 – 500 kW	Hot water
50 – 500 kW	Domestic hot water, space heating, pools
100 kW – 1 MW	Domestic hot water, space heating, pools
100 kW – 1+ MW	Space heating, domestic hot water
300 kW – 5 MW	Domestic hot water, space heating
100 kW – 1 MW	Process heating
100 kW – 1+ MW	Domestic hot water, space heating
50 - 300 kW	Domestic hot water, absorption cooling, desiccants
100 – 500 kW	Desiccants, domestic hot water, space heating
300 kW – 5 MW	Desiccants, domestic hot water
100 – 500 kW	Absorption cooling, space heating, desiccants
	100 kW - 1+ MW 100-500 kW 300 kW - 5+ MW 50 - 500 kW 300 kW - 30 MW 100 - 800 kW 100 - 500 kW 50 - 500 kW 100 kW - 1 MW 100 kW - 1 HW 300 kW - 5 MW 100 kW - 1 HW 50 - 300 kW 100 - 500 kW

Status of CHP in Texas


- Leads the nation in installed CHP
- National model for CHP regulations
 - TPUC CHP interconnection rule
 - TCEQ small generation permitting basis for RAP model rule
- Challenges remaining
 - Triple-challenge of electric demand,
 environment and natural gas constraints
 - Remaining utility tariff issues

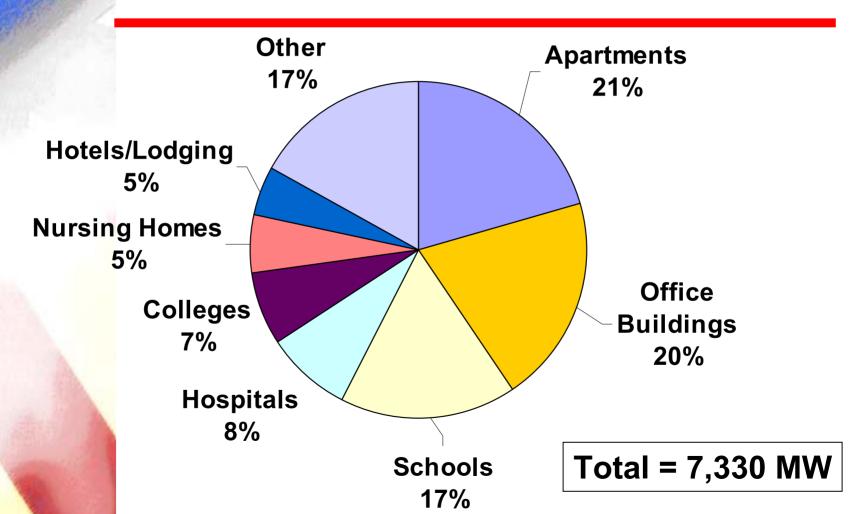
CHP Capacity in Texas by End User Sector

CHP Capacity by Fuel Type in Texas



CHP's Role in Texas's Energy Future

- Help address emissions issues
- Help with new, clean generation near demand
- Use gas resources more efficiently
- Reduce cost of meeting energy needs
- Modernize energy infrastructure


Potential for Additional CHP Capacity In Texas

Total potential = 20,730 MW

Source: Onsite Sycom 2000

Commercial Sector CHP Capacity Potential in Texas

Source: Onsite Sycom 2000

Conclusion

- CHP represents an important
 - energy,
 - strategic and
 - environmental resource
- The Technologies are here!
- What is needed is a paradigm shift in the way we think about energy
- Need to overcome market inertia

DOE/ORNL Solicitation

- Research and Development of Packaged / Modular Building Cooling Heating (BCHP) Systems
- Two Phases
 - Product definition & prototype development
 - Product/system development, field benchmarking and commercialization

Phase 1 - Scope of Work

- Subcontract will be cost reimbursable
- Awards to Major Manufacturers,
 Packagers or Design-Build Companies
- Only Phase 1 Teams Eligible for Subsequent Phases
- Phase 1 Completion Estimated at 2
 Years

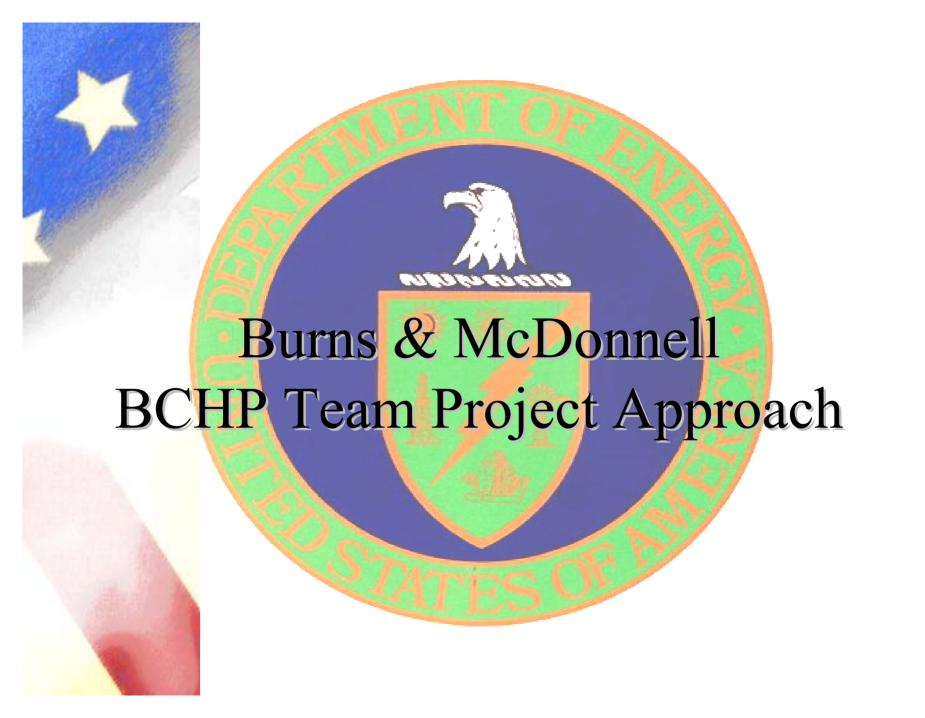
Four Key Technical Areas

- Thermally Activated Technologies
 - Absorption cooling
 - Thermal heating
 - Humidity controls
- Onsite Power Technology
- Controls Development
- Systems Integration

Thermally Activated Technologies

"Without viable use for the heat energy rejected from the making of electricity, there would be no benefit from BCHP"

- Potential Uses Include:
 - Cooling, dehumidification, humidification, water heating, steam heating, drying and shaft power from heat energy


BCHP Scope of Work

Packaged and Modular Systems
 Development Focuses on Innovative
 Integration of On-Site/Near-Site Power
 Generation and Thermally Activated
 Systems to be Incorporated Into
 Individual Buildings.

BCHP Scope of Work (continued)

- Packaged or Modular BCHP Systems
 - Commercial Buildings
 - Institutional Buildings
 - Government Facilities
 - District Energy Systems that Distribute
 Thermal Energy to:
 - College Campuses
 - Hospital Complexes
 - Industrial Parks
 - Large Commercial Campus Developments

Burns & McDonnell BCHP Program Manager

- Integrated Design-Build Company
- Founded in 1898
- 100% Employee Owned 1,700 Employees
- More Than 100 Years Expertise with in Energy Generation Projects
- 20 Regional Offices Projects Worldwide

Solar Turbines Incorporated Industrial Turbine Supplier

- Subsidiary of Caterpillar
- Leading U.S. Supplier of Industrial Turbines Ranging from 1 to 13 MW
- Proven Technology with Strong Technical,
 Research & Development Expertise
- Headquartered in San Diego with a Global Presence

Broad USA, Inc. Absorption Chiller Supplier

- Worlds Largest Manufacturer of Absorption Chillers
- 1,200 Units Annually = Over 500,000 Tons with More Than 6,000 Units in Operation
- The Only Dedicated Manufacturer of Absorption Chillers with a 3.3 Million ft² Manufacturing Facility
- Proven Track Record with the DOE

Purpose

- By combining existing proven technologies...
 - Determine if this is better than existing configurations
 - Determine the optimum configuration of the system
 - Develop method to properly size a BCHP system for a specific load profile

BCHP Statement of Work

- Task 1 Prepare Project Plan
- Task 2 Packaged Systems Concept Definition
- Task 3 Analytical Optimization and Preferred Hardware Description/ Specification
- Task 4 Testing and Rating Procedures and Standards

BCHP Statement of Work (continued)

- Task 5 Prototype Development and Fabrication
- Task 6 Laboratory Testing of Prototype Packaged BCHP System

Solar Turbines - Centaur 50

• Nameplate: 4.4 MW

• Exhaust: 950 °F

• Heat Rate: 11,905 HHV

• Low NOx: 15 ppm

Broad - Spectrum

- Indirect-Fired Absorber
 - Nominal 2500 TonsFuel: Turbine Exhaust

System Concept **HWS HWR EXHAUST EXHAUST COOLING TOWER** HOT WATER **FUEL** 2500 TON 4.5 MW **EXHAUST** COMB. **ABSORPTION GENERATOR TURBINE CHILLER DIVERTER VALVE ELECTRICITY CHR INLET AIR COOLER CHILLED WATER AIR**

Issues

• Emissions

 Effect of running the turbine exhaust through the high stage generator

Economics

- Is this more efficient and cheaper than a HRSG
- Gas cooling vs. electric cooling
- Turbine exhaust-fired vs. steam turbine chiller
- Must run turbine to get free cooling/heating
- Flue gas diversion

Estimated Project Schedule

02/2002
02/2003
03/2003
05/2003
09/2003
12/2003
04/2003
12/2004

Current Project Status

- Site selection has been completed and the project will be sited in Austin, TX
- BCHP economic model and preliminary cost estimate has been developed
- BCHP will designed to operate in a base load configuration
- BCHP will have the ability to supply power to the grid

Expanding the BCHP Team

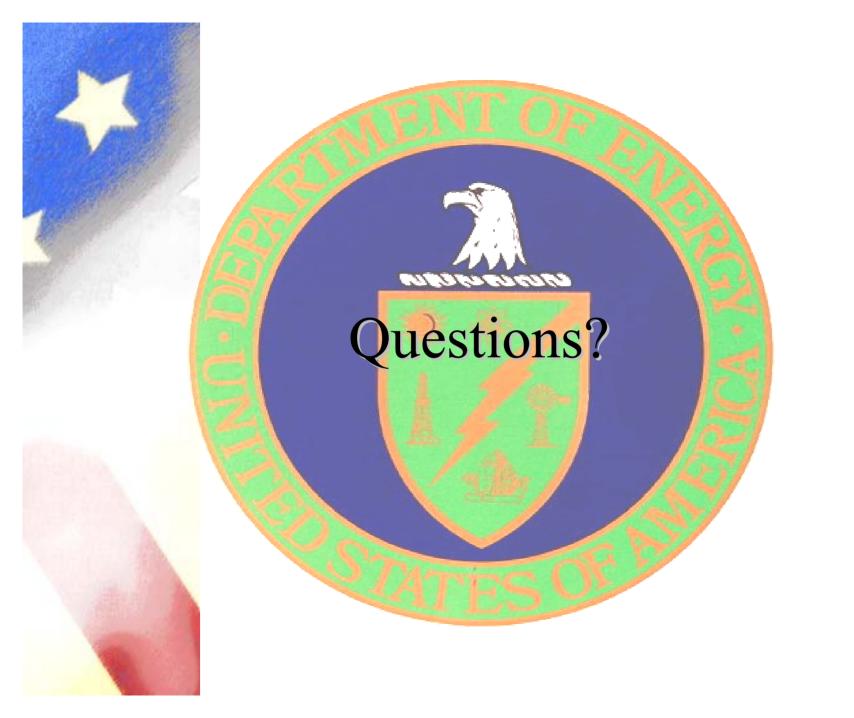
- Other parties interested in collaborating and possibly providing some funding
 - Austin Energy
 - EPRI
 - GTI
 - University of Texas
 - Other Research Entities

Summary Benefits of BCHP

 Cooling, dehumidification, humidification, water heating, steam heating, drying and shaft power from heat energy

Highly reliable on-site power generation

Uses exhaust without a waste heat boiler providing project cost reduction, decreased O&M costs, improved capacity, and increased efficiency


Summary Benefits of BCHP

- Greater than 80% (Btu Out/Btu In)
- Approximately 500 Tons of "free" cooling per MW of generation
- Direct-fired absorber COP of 1.2 raised to 1.6 from supplementing the gas with exhaust
- Low emission gas turbine generator

